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ON THE LOCAL CONVERGENCE OF A QUASI-NEWTON METHOD
FOR THE NONLINEAR PROGRAMMING PROBLEM*

THOMAS F. COLEMANT AND ANDREW R. CONN#

Abstract. In this paper we propose a new local quasi-Newton method to solve the equality constrained
nonlinear programming problem. The pivotal feature of the algorithm is that a projection of the Hessian of
the Lagrangian is approximated by a sequence of symmetric positive definite matrices. The matrix approxima-
tion is updated at every iteration by a projected version of the DFP or BFGS formula: this involves two
evaluations of the Lagrangian gradient per iteration. We establish that the method is locally convergent
and the sequence of x-values converges to the solution at a 2-step Q-superlinear rate.

1. Introduction. Quasi-Newton methods have had a large measure of success in
the minimization of smooth nonlinear functions

f(x):R">R".

In particular, the Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS) updating formulae have given solid numerical performances over the
past decade and are generally accepted as the best rank-2 updating formulae (for
dense problems). In addition to their numerical record, these methods have two
significant theoretical properties: they yield locally Q-superlinearly convergent
algorithms and their Hessian approximations remain positive definite.

It is difficult to fully explain the superior numerical performance of the DFP/BFGS
method relative to other updates; however the maintenance of positive definite Hessian
approximations seems crucial—it is also a “‘natural” property since the true Hessian
at the solution will likely be positive definite (and will certainly be at least positive
semi-definite). In addition, positive definiteness allows for a stable implementation
(Gill and Murray (1974)) and ensures that search directions are also descent directions.

The situation for minimization in the presence of nonlinear constraints is less
satisfactory. Successive quadratic programming (SQP) and projection approaches have
recently been in vogue: however, a true Q-superlinear quasi-Newton method for the
nonconvex case is unknown to the authors. Powell (1978) has adapted the BFGS
formula to the nonlinearly constrained case. He gives sufficient conditions under which
a successive quadratic programming approach will yield a 2-step Q-superlinear conver-
gence rate (assuming convergence) but does not show that his modified BFGS method
satisfies these conditions. Instead R-superlinear convergence is proven. Interestingly,
the sufficiency conditions given by Powell necessitate that only a projection of the
Lagrangian Hessian approximations be suitably accurate. We also note that Han (1976)
has proven that this SQP/BFGS method exhibits Q-superlinear convergence for the
convex case.

Other authors, Boggs, Tolle and Wang (1982), have given sufficient (and necessary)
conditions for Q-superlinear convergence for the constrained problem, however we
are unaware of an updating method which satisfies these conditions. Tanabe (1981)
has proposed various projected updating schemes but, to our knowledge, has not
established convergence properties.

In our opinion, a major difficulty with most of these approaches is that a full (n
by n) positive definite Hessian approximation is required by each of the methods but
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only a projection of the Hessian of the Lagrangian need be positive definite at the
solution. Therefore we feel that a more natural approach is to recur a positive definite
approximation to the projection of the Hessian of the Lagrangian. Gill and Murray
(1974) have followed such a strategy in the case where all constraints are linear,
however there has been little work along these lines for the nonlinearly constrained
problem. (Another possibility is to recur a positive definite approximation to the
Hessian of an augmented Lagrangian function. Glad (1979), Han (1977) and Tapia
(1977) have all established Q-superlinear convergence results for such methods. We
will not discuss this type of method further in this paper.)

Coleman and Conn (1982a,b) have suggested Newton and discrete-Newton
methods for nonlinearly constrained problems, which require only a projected Hessian
approximation. The method we describe here is a direct extension of the local Newton
method given by Coleman and Conn.

The motivating remarks given in these previous papers are applicable here also,
however we present an alternative view. Consider the problem

minimize f(x), subject to ¢;(x)=0,i=1,---,¢,

where all functions are twice continuously differentiable. Suppose that our current
estimate to the solution is x and let C be the n by ¢ matrix of constraint gradients,
evaluated at x. Let Z be an n by (n—1t) matrix, whose columns form an orthonormal
basis for the null space of C” (assume that C has rank ¢). Finally, let the correction
to x, say 6, be defined as the solution to the following quadratic program:

(1.1) minimize Vf(x)"6 +16"ZBZ"s, subject to CT6+c(x)=0,

where B is an (n—t) by (n—t) positive definite matrix. Under the conditions mentioned
above, (1.1) has a unique solution given by

(1.2) S=h+v,

where

(1.3) h=-ZB'ZTVf(x),

(1.4) =—C(CTC) e(x).

Note that B can be considered to be a positive definite approximation to
(1.5) ZAV (¥ =T A V2 a(xM)]Z,,

where C1Z,=0, ZiZ,=1 Cy=(Vcy(x*),:+,Y¢(x*), Vf(x*)=C,A* and
c(x*)=0.

Under second-order sufficiency conditions, the (n—1t) by (n—1t) matrix (1.5) is
positive definite. The method we propose in § 3 uses a projected form of the
DFP(BFGS) update to recur a positive definite approximation to (1.5) and involves
two (Lagrangian) gradient evaluations per iteration. The correction to x that we analyze
differs slightly from (1.2) in that (1.4) is replaced with

(1.6) v=—C(CTC) 'c(x+h).

We emphasize that all results given in § 3 are valid if (1.4) replaces (1.6). We have
carried out the analysis using (1.6) because of a result given in Coleman and Conn
(1982b) which states that (1.3) together with (1.6) guarantee that a certain exact
penalty function will decrease, provided x is sufficiently close to x*. The result is valid
in the discrete-Newton case and is not true if (1.4) is used instead of (1.6). We have
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not yet proven that a similar result is true for the case when B is a quasi-Newton
approximation but it is this possibility which prompted the use of (1.6).

In § 2 we present conditions which are sufficient to give a 2-step Q-superlinear
convergence rate (assuming convergence). These conditions are slightly more general
than those given by Powell (1978) in that they do not presuppose a particular algorithm
class. These conditions are in the spirit of the superlinearity characterization for
unconstrained optimization given by Dembo, Eisenstat and Steihaug (1982).

In § 3 we describe the algorithm and then establish that the method is locally
2-step Q-superlinearly convergent. The method of proof is similar to that used by
Broyden, Dennis, and Moré (1973) and Dennis and Moré (1974) for the unconstrained
case.

In § 4 we give our concluding observations and discuss future work.

2. Sufficient conditions for 2-step Q-superlinear convergence. Consider the fol-
lowing equality constrained nonlinear programming problem:

minimize f(x), subject to ¢;(x)=0,i=1,---,1¢,

where all functions are twice continuously differentiable on an open convex set D of R"
and map D~ R'. Let x* € D be a local solution to the equality constrained nonlinear
programming problem. The question we address in this section is this: given that a
sequence of points {x*} converges to x*, when can we be assured that a 2-step
Q-superlinear convergence rate is achieved? That is, what reasonable conditions ensure
that

41— ¥ = ol 1= x¥| 2

(We make extensive use of the “O” and “‘0” notation, where ¢, = O(y,,) means that
the ratio ¢,/ remains bounded as k tends toward infinity and ¢, = o(y,) means
that the ratio ¢, /¢ tends to zero as k tends to infinity.)

Definitions and assumptions. Unless stated otherwise, the results given in this
paper will all be subject to the following assumptions.

Let C(x) denote the n by ¢ matrix (Vc,(x),- - -, V¢, (x)) and let c(x) denote the
vector (¢;(x), -+ -, ¢(x))". Define C, and c* to be C(x*) and c(x*) respectively. For
any x in D, define A =A(x) to be the vector [C(x)"C(x)]*C(x)TVf(x). We will
assume that C(x*) has full column rank. Since C(x) is continuous it follows that there
is an open convex set D containing x* such that for all x in D, the singular values of
C(x) are uniformly bounded on D, above and below, by positive scalars.

An n by (n—1) matrix Z(x) is defined to be a Lipschitz continuous function of x
in D satisfying

(2.1) Z(x)"Z(x)=1
and
(2.2) C(x)"Z(x)=0,

where I represents the identity matrix. (Coleman and Sorensen (1982) have demon-
strated that a suitable Z(x) is well-defined and efficiently computable in a neighbour-
hood of x*.) Uniquely define vectors u(x) and w(x) by

(2.3) x—x*=C(x)w(x)+ Z(x)u(x).

Since x™ is a solution, it follows that the gradient of f can be expressed as a linear
combination of the gradients of the constraint functions. That is, there exists a vector
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A*¥e R, such that
(2.4) Vf(x*) = Cyd*.

Define L(x) to be the Lagrangian function f(x)— c(x)TA*. It will be assumed that the
second-order sufficiency conditions hold at x*. Thus the matrix

H(x*, x*) = Z(x*) [V f(x*) =L A ¥V e (x*)]Z(x%),

is positive definite. We note that this implies that the eigenvalues of the (n—1) by
(n—1) matrix H(x, y), defined by

H(x,y)=Z(x)T[Vf(y) =LAV a(9)]Z(x),

are uniformly bounded below by a positive scalar on an open convex region
(D, D), say) containing (x*, x*). The above implication is a consequence of the
following: The eigenvalues of the matrix H(x, y) are continuous functions of the
elements of the matrix (see Ortega (1972, p.45), for example). The elements of
H(x, y) vary continuously with (x, y) due to Z and V2f, V2c; being continuous functions
of x and y respectively. Finally, the result follows from observing that H (x*, x*) is
positive definite. We assume that the radius of D is sufficiently small so that the
eigenvalues of the Hessian matrices

sz(;x)avzci(x)a i=19' . at

are uniformly bounded above on D by a positive scalar and that the Hessian matrices
satisfy a Lipschitz condition on D.

When the above quantities are evaluated at a particular point x*, then the argument
x* will be abbreviated to a simple subscript or superscript. For example, C(x*) will
be written C, and w(x*) becomes w*. We will denote H (x*, x*) by H,. The symbol
«k» will be used to denote a function evaluated at x*: for example, Vf* represents
VF(x*).

Let 8 represent x**'—x*, and define
rk=ZIVf(x*)+HZI8* and rk=c*+Cfs"

Unless noted otherwise, the symbol || - || will denote the vector or matrix 2-norm. One
final assumption: we assume that finite convergence does not occur: x* # x*, for all k.

Note that the residuals, rf and r* reflect the accuracy to which the systems
H.ZTs*=—ZIVf(x*) and C 8" =—c* are solved. (Alternatively, we can view rf as
reflecting the accuracy of the projected quasi-Newton approximation since ri=
(B, — Hy) Bx'ZTVf(x*).) A natural approach is to show that if the residuals are suitably
small at each iteration (i.e., the systems are solved to suitable accuracy) then a
superlinear convergence rate is achieved. This view is compatible with the superlinear
characterization, given by Dembo, Eisenstat and Steihaug (1982), for systems of
nonlinear equations. The following result establishes a crucial link between residual
size and 2-step Q-superlinear convergence.

THEOREM 2.1. If x* converges to x*, | x**'— x*|| = O||x* — x*|, and

(2.5) IrEl+lrell = o(IZEVF* N+ I -
then

41— 2% = ofl 1 = £
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Proof. The proof is divided into three parts and uses w and v as defined in (2.3).
In the first part it is established that ||w**"|| = o||x* — x*||; in Part 2, it is proven that
|u**!|| = o||x*~' — x*||; finally, in Part 3, the desired result is obtained.

Part 1. Clearly we can write

(2.6) Ci(x**"'=x*)=CT(x*—x*)—c*+c*+CTs*

If we add Ci,(x*"" —x*) to both sides of (2.6), rearrange, and then take norms, we
obtain

2.7 W= I(ChaCud) T IIICE(x = x*) +(Ci— C) T (% — x*) = c¥||
+lc*+CL8 |+ | (Cerr = C) T (21 = x*) 1.
By Taylor’s theorem, and since ¢* =0,
cf=Cr(x*—x*)+o|x*—x*|,
and therefore the first term in (2.7) is o||x*—x*|. By (2.5),
(2.8) Il = oI ZEVF*I + I ).

Since VL(x) and c(x) are Lipschitz continuous, ¢*=0, Z{Vf*=ZIVL* and VL* =0,
it follows that

(2.8.1) I1ZEVF I+l I = Oflx* — x|,

and therefore, combining (2.8.1) with (2.8) it follows that the second term of (2.7) is
o x* — x*||. But clearly, by assumption, || x**! — x*|| = O||x* — x*|,, and by the Lipschitz
continuity of C(x) we have ||Cy; — G || = O||x*** — x*||. However,

e B e R Eal

and hence || Cy+; — Ci|| = O||x* — x*|. It follows that the third term of (2.7) is of|x*—x*|
and Part 1 is established: ||w**|| = o] x*—x*|.
Part 2. Clearly we can write

(29  ZE(MM=x* = H{[HZ{(x*—x*) = ZL(Vf*-Vf*) + H.ZT§%].
If we add Z7,,(x***— x*) to both sides, rearrange and take norms, we obtain
(2.10) |u | = Ty+ To+ Ts+ T,
where

T, =||H'[-ZiVf+ H(xX, x*) Z] (x* — x*)]|,

T =|-Hi'(H(x", x*) = H) Z{ (x* - x*)|,

Ty =H'[ZiVf*+ H.Z{ 8 ]|,

Ty = |(Zi+s 'Zk)T(ka‘X*)"-
By Taylor’s theorem and VL*=0,

VLY =V2L*(x* — x*) + o] x* — x*|,
and thus, using (2.3),
Z{Vfk=H(x* x*)Z{(x* - x*)+ Z[VL*C,w* + o x* — x*|,.

But [|[V2L*C|| and |H'|| are bounded above and ||w"| is of|x*~*—x*|, by Part 1;
therefore, T, is of|x*~"—x*||. By convergence, | H(x*, x*)— H,||~ 0, and this along
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with the fact that ||[Hz'| is bounded above implies that T; is o] x*“ —x*||, and thus T,
is of|x* 7! —x*|.
Assumption (2.5) implies that

(2.11) |ZIvfk+HZE8" | = o(|ZEVF |+l c ).

By (2.8.1) and the boundedness of H ', it follows that T is o||x* — x*|| which implies
that T is o||x*~" = x*|. Finally, since ||x**' = x*|| is O||x*™* — x*||,and || Z,.+; — Z|| > 0,
T, is o||x*~'—x*|. We have established that T; = of|*"'—x*| for i=1,2, 3,4, which,
in light of (2.10), implies that [|u**||= o] x*~"—x*|.

Part 3. By definition,

k
X +1 _x* = Ck+] Wk+1 +Zk+1uk+1,
which implies

x4 = x| = [ Ceaall - 1W< I+ 1 Zian - -

But [|x*— x*| is O||x*~'—x*||, and therefore, by Part 1, [|[w""!| = o[|x*~" —x*||. Part
2 establishes that ||u**"| = o||x*~'—x*|| and since || Ci|| and || Z || are bounded above,
it follows that [|x**!—x*| = o||x*"'=x*||. O

The conditions given here are closely related to those given by Powell (1978):
however, the above conditions do not presuppose a particular algorithm class. In the
next section we employ Theorem 2.1 to establish the local convergence rate property.

3. The algorithm and its properties. In this section we develop and analyze, in
detail, a projected DFP updating procedure. We have chosen to focus on the DFP
updating scheme, instead of the BFGS update, in order to follow more closely the
results of Broyden, Dennis and Moré (1973) and Dennis and Moré (1974). It is not
difficult to see, as Dennis and Moré (1974, § 4) indicate for the unconstrained case,
that the results are equally true for the projected BFGS update specified below by
(3.5.1).

The method we are concerned with is defined by:

(3.1) hk"“'ZkBZIZZVf“
(3-2) xk+(—xk+hk
If (h*=0) go to (3.6)
(3.3) ske ZT(x = x%)
(3.4) yk(—ZZ[(ka+_Ck+Ak)—ka]
k__B k k T+ kpyk _ kT
(3.5) Bk+1<—Bk+[y kST 10y )k ty [y* = Bis"]
(s)"y
(89T = Bis")y (¥
((sk)Tyk)z
(3.6) vk(_—Ck(CZ'Ck)-lck+
3.7 Kkl kg pk

(3.8) A e (CT Crin) 1CR VA
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Update (3.5) is just a projected version of the DFP formula. The corresponding
projected BFGS formula is

yk()’k)T_Bksk(sk)TBk

(yk)Tsk (sk)TBksk .

Note that if h*=0v*=0, then x*=x*. Once again we remark that (3.6) could be
replaced with (1.4) and all results in this paper remain valid. Note also that the
algorithm involves two evaluations of the gradient of the Lagrangian function per
iteration. This contrasts with quasi-Newton methods for unconstrained optimization
which involve one gradient evaluation per iteration. In the next three lemmas we

establish some useful bounds.
LemMMA 3.1. Provided x* € D there exists a positive scalar K, such that.

IA% = 2% = Kollx* — x*|.

(3.5.1) By« B+

Proof.
A =A% = (CEC) I CRVf*~(CLC) ' CLVf¥|

= (CRCOTCRIVF = Vf|
+(CLCHTCi— CLIvf*
+(CKC) T [CLC— CLCIHCLCH I IRV

But
IC4Cs— CLCil = I(C— CL)T(Ce= C) = CE(Ci— Cy) = (Ci— C) G|
=[C— GllP+2| Gl 1= Gyl

Hence, by considering that C(x) and Vf(x) are Lipschitz continuous on D,
I(C(x)TC(x))7*| and |C(x)| are bounded above on D, and

IVFN= VIV + Ollx* —x*|,

we obtain the required result. 0O
LEMMA 3.2. For some positive constant K, and any Z(x), xe D, x* e D,

1Z(x)T (V35 =T AEVZcH) Z(x)— H(x, x*)|| = K, || x* — x*|.

Proof. Clearly, by using || Z|| =1, the Lipschitz continuity of the Hessian matrices
and the upper boundedness of V¢, V>,

1Z(x)T (V2 =T AFV2eE) Z(x) = H(x, x*)|| = | (V2f* =T AFV2ch) — (V2 f* =T A% v2cH)|
= 7flx = x|+ Ak —a%|,

for some positive scalars 7, and 7,. Hence, by considering Lemma 3.1, the result
follows. 0O

Lemma 3.3. For some positive constant K, and all x in D, x* € D,
1ZEIV2f(x) =T A(x)V26i(x)1Z = ZL [V (x) = X Mi(x) V2 ci(x)]Z, || = Ko || x* — x*).
Proof. Let A denote the matrix V2f(x)—Y A;(x)V2c;(x). Clearly,
|ZEAZ ~ ZLAZ, | = (ZX ~ Z)A(Zi~ Z,) —2Z{ AZy + ZEAZ + ZLAZ,
=1Zi= Z,PI Al + 201 Zc = Z4 ] - | Al
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But, by assumption, Z(x) is Lipschitz continuous and since
A(x)=V2L(x)+ O|A(x)— A%,

the result follows from the boundedness of |V2L(x)|| on D, and Lemma 3.1. O
The following result utilizes the bounds established in the previous three lemmas
and, in conjunction with Lemma 3.5, will yield the convergence rate result.
LEMMA 3.4. Assuming that || x**! — x*|| = O||x* — x*||, there exists a positive scalar
& such that if ||x*—x*|| =&, then

IMy* = M~"s || =51M s ),

where M = H, /.
Proof. Clearly,

(3.9) IMy*—M7's | = |M]|- |ly* — Hys“|l.

By Taylor’s theorem, and Lipschitz continuity of V2f, VZc,

(V5 = Cah ) = (Vf* = G ) + (V2 —E AT Ve (6" = x5)
+Ek(xk+‘xk),

where || Ec]| = O||x**"—x*|.. But,

(3.9.1)

(3.9.2) XK —x* = ZZT(x* = x*) = Z,s"
and therefore, combining (3.9.1) and (3.9.2) and multiplying by Z I establishes
(3.10) y& = ZIV3 k=Y A V2K Zs* + ZE ExZis™.

But (h*)Tv* =0 implies [|x**—x*| = ||x*** - x*||. Hence,
|E ]| = O]l x**! = x*|| = O(max {[|x*** = x*||, | x“ = x*|}}).
Therefore, using (3.10), there exists a positive constant K3 such that
ly* = Hys* [ = (1ZEIV?f* L A1 Ve 1Zi— Hy|
+ K max {||x**" = x*|, | x* = x*[[D) - | s*|
= | ZTIVF* — T AKV2ek1Ze = ZEIVF* - T AV eI Z4 s

+ | ZIVA* =T AV i1 Z, — Hyll - sl

+ Ky max {[[x**" = x*|, [lx* —x*[}- Is"]l.
Hence, in light of Lemmas 3.2, 3.3 and provided £ is sufficiently small,
(3.10.1) |y = Hys* || = (2K, + 2K, + K3) max {[|x**! = x*|, " = x*[}- |||l

Since [[x**'—x*|| = O||x* — x*|| (by assumption) it follows that for ¢ sufficiently small,
y

lIs“|
ly* = Hys“ | =5
* 3| M|
which implies, by (3.9)
IMy*—M~'s*| =5IM~'s¥|. 0

Dennis and Moré (1974, Lemma 3.1) established the following ‘““bounded deterior-
ation” result. For completeness, we reproduce it here.
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LEmMMA 3.5. Let M be a nonsingular symmetric matrix of order n—t such that
|My*—M"'s*||=3IM's*|| for some vectors y* and s* in R"™" with s*#0. Then
(y*)"s* >0 and thus By, is well-defined by the update formula (3.5). Moreover, there
are positive constants ao, a; and a, (depending only on M and n—t) such that for any
symmetric matrix A of order n—t,

oy |[My* - M7's¥|

k k
—As
| Ber ~ Al = [(1 e TV ]~an—A||M+a2——"y !

M=tk
where || Q| s = ||MOM || ¢ (F denotes the Frobenius norm), aq< (0, 1] and
IM[B.— Als*||
IB—AllmlIM ™ s
A0 otherwise.

We are now ready to prove, in Theorem 3.6, Lemma 3.7, and Theorem 3.8, that
a 2-step Q-superlinear convergence rate is exhibited, provided we assume that the
sequence converges. These results follow almost directly from the results of Dennis
and Moré (1974) and Theorem 2.1.

THEOREM 3.6. Assume that ¥ || x* —x*|| <co, | x**! — x*|| = O|| x* — x*||, and that
B, is symmetric positive definite. Then the algorithm defined by (3.1)-(3.8) produces a
sequence of matrices B, and vectors x* which satisfy

I[B— H,)Z i (x*"! = x")]|
s I
Proof. Initially, assume that s* # 0 for all k. Clearly for k sufficiently large, Lemma

3.4 is applicable and therefore the assumptions of Lemma 3.5 are valid. But, for
M™2=H,,

for Bk # A,

(3.11)

IMy* =M~ s*|| = M| - ||y~ Hys*|,
and using (3.10.1) and ||x**'—x*| = O||x* — x*|| (by assumption),
Iy* = Hys*[| = Kall x* = x*|| - || s*|
for some positive K,. Therefore, taking A =M "2 in Lemma 3.5,
| Bi+1— Hyllm =[(1— @08%)"? + @104 ]| By — Hy |1 + @204,
where oy = O||x* —x*|,
IM[B,.— H,]s“|
B — HyllmlIM 7" s¥|
0 otherwise

for Bk # A,

and ag€ (0,1].

It is clear that Dennis and Moré (1974, Lemma 3.3, Thm. 3.4) can now be directly
applied to establish that (3.11) is true if s*#0 for all k. In particular, since (1—
a,0%)"/?=1, Dennis and Moré (1974, Lemma 3.3) guarantees the existence of

lim |HZ?*BHL*~ 1|
->00

The arguments of Dennis and Moré (1974, Thm. 3.4) can be applied without change
to yield

o [ce]
—22 ) oi"Bk_H*"M < +00.




764 THOMAS F. COLEMAN AND ANDREW R. CONN

Either {|| B, — H,||a} converges to zero, establishing (3.11) trivially, or {6,} converges
to zero. In the latter case, we obtain

I(B— Hy)s*]
lls“]

which clearly implies (3.11) since s* = Z7 (x**'—x*) and ||s*|| = || x**' = x*||. If s*=0
and x* # x*, then

-0,

I(B = HZEG = xM] _
k+1_xk" ]

1%

and the result is established. 0O

LEMMA 3.7. Under the assumptions that Y |x*—x*|| <o, |x**'—x*|=
O|x*—x*||, and B, is positive definite, the algorithm given by (3.1)-(3.8) produces a
sequence of iterates with the property

IrEl+ 1l = 0N ZEVF N+ NI
Proof. By definition,
w*=(CLC)CR(x*—x*),
and by Taylor’s theorem and ¢*=0,
ck=CT(x*—x*)+o|x*—x*|.
Considering that ||(C C,)™"|| is bounded above, it follows that
(3.12) Iw ]l = Ollc* ||+ ollx* —x*|.
Furthermore, by Taylor’s theorem and using VL* =0,
VLK =-V2L*(x*—x*)+ of| x* — x*|,
which implies, using (2.3),
ZIVf* = Hau*+ZIV2L*Cw* + o] x* — x*||.
But |[H%'|| and ||Z{V2L*C,|| are bounded above and therefore,
(3.13) lu*ll = OUZEVF | +Iw*) +ollx* — x*|.
Combining (3.12) and (3.13) produces, for k sufficiently large,
(3.14) Ix* = x*[| = Ol + 1 ZXV I,
since ||Ci|| is bounded above. By definition,
ri=ZIvf*+ HZI(x*"' = x*)=Z[Vf*+ H, s* - (H,— H/)s*
=-B,s*+ H,s*+(H,— H,)s".

Therefore, taking norms,

IrEll = 0B — Hyls“ Il + | He = Hyll - Is*|l.
But ||s*|| = O||x*—x*| and H, - H,,, which along with Theorem 3.6 and (3.14) gives
(3.15) Irzll = o(IZEVF I+l I
Finally, by definition,

rk=ck+CI(x*" = x*)=ck+ CT(h*+v").
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But Cih*=0and v*=~C(C{ C,) " c(x* +h*). It is now easy to verify, using Taylor’s
theorem, that
el = oflx*—x*|,

which implies, by (3.14),
(3.16) Irel = o(IZEVF*N+Nc“[).

Clearly, by (3.15) and (3.16), the result is established. 0O

By Theorem 2.1 we have now established that the sequence x* converges at a
2-step Q-superlinear rate (assuming ¥, ||x*—x*|| <o and [|x**' - x*|| = O||x* — x*|)).
We state this formally in the following theorem.

THEOREM 3.8. Under the assumptions that Y ||x*—x*|| <o, |x**'—x*||=
O|x*~x*|, and By, is symmetric positive definite, algorithm (3.1)-(3.8) produces a
sequence of iterates {x*}, with the property

”xk+l - x*”
o= = x|

Proof. The result follows immediately from Lemma 3.7 and Theorem 2.1. O

The remaining results are needed to establish the local convergence properties:
¥ | x* = x*|| <o, and ||x**!—x*|| = O||x* — x*||. First we establish two useful bounds
in Lemmas 3.9 and 3.10.

LEmmMa 3.9. Assume that the smallest eigenvalue of B, is greater than a positive
scalar Ks, and that x* € D. Then there exists a positive scalar K, independent of k,
such that

->0.

Ih* || = Kellx* - x*|.
Proof. By definition, h* =—Z,Bx'ZIVLF, and since VL* =0, it follows that
I | =l Z.Bi' ZE[VL* —VL¥]|.

But since VL is Lipschitz continuous on D, ||By'| is bounded above, and || Z,| =1,
the result follows. 0O

LemMmaA 3.10. Under the assumptions of Lemma 3.9, there exists a positive constant
K, independent of k, such that

lo* ]| = Kol|x* - x*|.
Proof. By definition,
o v*==C(CLC)  e(x*+n"),
and since Cyh* =0,
c(x*+h*)=c*+ol|lh"|.
Clearly then,
lo*I=1Cll- ICEC I Ll c* | + ol ¥ |}.

By the boundedness of ||Ci| and [|[(C{C.)7'|, the fact that ¢*=0, the Lipschitz
continuity of c(x), and Lemma 3.9, the result follows. 0

CoROLLARY 3.11. Under the assumptions of Lemma 3.9, there exists a positive
constant Kg, independent of k, such that

[l = x*|| = Kgll x* = x*]|.

Proof. The result is an immediate consequence of Lemmas 3.9 and 3.10. O
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We are now ready to show, in Lemmas 3.12, 3.13 and Corollary 3.14, that provided
two consecutive points are sufficiently close to x*, a (2-step) contraction is exhibited.

LEMMA 3.12. Under the assumptions of Lemma 3.9 and provided ||x*—x*| is
sufficiently small, there exists a positive constant Ko, independent of k, such that

Il = Kollx* - x*||2.

Proof. By Corollary 3.11 we can assume that | x* — x*| is sufficiently small so that
x**1e D. It is easy to verify that, using ¢*=0 and Cyh* =0,

' =xk—C(CTCH'CT(x*—x*)+ h* +p",

where p" is a vector satisfying | p*|| = O||x* — x*||>. Therefore, C¢(x**'—x*)=C1p".
But, by definition,

wk*l= (C;crﬂ Ck+1)_lcl—<r+1(xk+l -x¥),
which implies that
whtl = (CkT+1Ck+l)—l[CITc.pk + (C{ﬂ - C{)(xk+] -x)]

But, |(CF+1Cis1) "', IC%| are bounded above, ||p*|| is Ofx* —x*||%, |x**'—x*| is
O||x* —x*|| by Corollary 3.11, and C(x) is Lipschitz continuous on D. The result
follows immediately. O

LEMMA 3.13. Provided the smallest eigenvalue of B, and By is greater than a
positive scalar Ks then there exist positive scalars & and A such that if

[x“'—x*|=g |x*-x*|=¢ |[B:'-Hy'lm=4,
then
=5 lx " = x*.

Proof. Initially choose £ so that ||x—x*|| = £ implies that x is in D. By Corollary
3.11 we can reduce &, if necessary, so that

|x*'—x*|=é=>x"e Dand x*"'e D.
By (3.1)-(3.8),
M=y~ ZHIZ{VL" + Z,[H,' - B'1Z{VL" + v~

However, subtracting x* from both sides, multiplying by Z; and using Lemma 3.3
yields, for £ sufficiently small,

U= AW + Zip +[H' = B 1ZIVL +(Ziiy = Z) T (XK = x¥),

where A, =—H,'Z{V2L*C,,and p" is a vector satisfying || p*|| = o||x* — x*||. But || A«||
is bounded above, || ZfVL*| = O|x*—x*||, and

1Zis1= Zicll = O(max {[|x*** = x*||, [|x* — x*|I}).

Therefore, by Corollary 3.11 and Lemma 3.12, there exists a positive constant K,
such that

M = Kolllx* ! = x*|| + | H = B 112! = x*|.
Therefore, if max {&, A}=1/8K,,, then
lu M = lx*" = x*|,

which is the required result. 0O
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COROLLARY 3.14. Provided the smallest eigenvalue of B,._, and B, is greater than
a positive scalar K, there exist positive scalars € and A such that if

k—1

Ix*7'=x*=g lx*-x*I=g |B'-Hy'|m=4,

then

= x* = = ).

“Proof. Initially let £ and A be as defined in Lemma 3.13. Lemma 3.12 and the
boundedness of ||Cy| allow & to be further restricted, if necessary, until

1
(3.17) I Cicrall - w2 =K. 1" = x*|. |
Combining (3.17) with Lemma 3.13 and Corollary 3.11 produces the desired
inequality. 0O

Borrowing heavily from Broyden, Dennis and Moré (1973), we now establish the
local convergence property.

THEOREM 3.15. Suppose that the sequence {x*, B} is generated by algorithm
(3.1)—(3.8) with starting pair {x°, B}, and with the matrix B, being symmetric positive
definite. Then there exist positive scalars g, and A such that if |x°—x*|<e,, and
”B()— H*"M < A, then

X lx* = x*|| < oo,

Proof. Choose positive scalars &, and A so that o= and A=A, where & and A
are as defined in the statement of Corollary 3.14. Further restrict A, if necessary, so that

(3.18) 2pAy=3,

where for any matrix A, || A|| = p||A||s, and y = || H}"||. But, by hypothesis, || Bo— H, || <
pA<2pA, and by (3.18), the Banach perturbation lemma (Ortega and Rheinboldt
(1970, p. 45)) can be applied to give

- Y
3.19 Bil|s————=2v.
(319) 1835 gy = 2
Since || By'|| is bounded, Corollary 3.11 can be used, for k=0, to give
(3.20) I = x*]| = O(eo).

Let &, = ]|x1—-x*|| and set & =max {&,, él}. Further restrict €, if necessary, so that

e =min {£, £}. (£ is defined in Lemma 3.4.) If s°=0 then B, = By and (3.21) is trivially

true. Otherwise, the assumptions of Lemma 3.5 are valid here and

[My°—M~'s%|
1M~

Iy’ = H,s°
M=%

(3.20.1) |Bi—Hyllp — | Bo— Hyl|m = a3 20+ a,

where M*=H,'. But

- - sl
IMy° =M% = |M| - |y~ Hys®ll, and [M7's%|= WM

Hence, if we define

as=a|M|[2(K,+K;)+K3], and  a,=a,|M|[2(K, +K,) + K],
then (3.10.1) and (3.20.1) imply

(3.21) | Bi=Hyllm = | Bo— Hyllm = (2a3A+ ay)e.
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Further restrict &g, if necessary, so that

(3.22) 4(2asA+ay)e =A,
which implies by (3.21) that
(3.23) | Bi— Hyllm =24.

Clearly, by (3.18) and (3.23) the Banach perturbation lemma can be applied again,
to give

(3.24) 1B =2y.
Now considering Corollary 3.14, we obtain
(3.25) 2% = x*|| =301x° - x*|.

We complete the proof with an induction step. Assume that

IBi—Hyllm =28, B =2y, [|x*"=x*|=3x* ' —x*| fork=1,---,m-1.
Clearly, for each k either Lemma 3.5 is applicable or s*=0. In either case we obtain
(3.26) | Birr = Hyllm = | Bx — Hyllm = (238 + ay) - £ ) tkr2,

where |p] represents the largest integer less than or equal to p. Therefore, summing
both sides of (3.26) from k=0 to k=m—1 yields

(3.27) | By — Hyllm = | Bo— Hyllm+ (2azA+ay) - £+ 4,

which, by (3.22) gives || B,, — Hy||m =2A. Therefore the Banach perturbation lemma
will again give |B,!| =27, and Corollary 3.11 will guarantee that {|x™*'—x*||=
Lx™=T—x*||. It follows that ¥ [|x*—x*||<co. O

Theorem 3.8, Corollary 3.14 and Theorem 3.15 imply that (3.1)-(3.8) generates
x-values which converge to x* at a 2-step Q-superlinear rate. We state this formally
in the following theorem.

THEOREM 3.16. Suppose that the sequence {x*, B;} is generated by algorithm
(3.1)-(3.8) with starting pair {x°, By}, and with the matrix B, being symmetric positive
definite. Then, there exist positive scalars g, and A such that if ||x°—x*||=¢,, and
| Bo— Hyllm = A, then {x*} converges to x* and does so at a 2-step Q-superlinear rate.

Proof. The result follows immediately from Theorem 3.8, Corollary 3.11 and
Theorem 3.15. 0O

4. Conclusions. We have proposed an adaptation of the DFP/BFGS formula to
the nonlinearly constrained problem. The central feature of our approach is that a
positive definite approximation to a projected Hessian is maintained. We have estab-
lished, without assuming convexity, that the method is locally 2-step Q-superlinearly
convergent. The performance of this method in practice is unknown and will be the
subject of future work. A detailed discussion of implementation techniques is also
postponed: we only remark that the conditions placed on Z(x) can be realized in
practise by using a careful implementation of the OR decomposition—details are given
in Coleman and Sorensen (1982). (Of course the projected quasi-Newton step depends
on the null space but not Z itself.)

For the inequality constrained problem, it is clear that once the active solution
set (of constraints) is identified, either implicitly or explicitly, the results given here
are directly applicable. However, the best way to modify projected approximations
when the active set is changing is not presently known. Another subject of future work
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is how to adapt a line search algorithm and generally globalize the local procedure
given here. In particular, it is not clear how to ensure y; s, >0 (a necessary condition
for the DFP/BFGS update) when x; is not in D.
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